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Expeditious synthesis of indolizine derivatives via iodine
mediated 5-endo-dig cyclization
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Abstract—Iodine-mediated 5-endo-dig cyclization of propargylic esters 2 at room temperature proceeded smoothly to give highly
functionalized indolizines 3 in excellent yields. A pyridine group was employed as a nucleophilic partner in this facile process for
the first time.
� 2007 Elsevier Ltd. All rights reserved.
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Figure 1. General structure of indolizine.
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Scheme 1. Retrosynthetic analysis.
Functionalized indolizines (Fig. 1) are common sub-
structures found in biologically important natural prod-
ucts and synthetic pharmaceuticals. Due to the various
biological functions associated with this skeleton, it
has been frequently employed as a key scaffold in the
drug industry.1 Accordingly, many synthetic methods
have been reported in the literature,2,3 including
Gevorgyan’s cycloisomerization approach.3f,4 However,
in many cases, expensive and toxic metals, extended
reaction times, and/or elevated reaction temperatures
are required, providing opportunity for the further
development of milder protocols. In continuation of
our interest on the facile synthesis of heterocycles using
mild and environment-friendly conditions,5 we found a
very convenient route to indolizine core structures facil-
itated by iodine. Here we wish to communicate our
results on the synthesis of highly substituted indolizines
via an efficient 5-endo-dig iodocyclization6 of propargy-
lic ester 2.

As a viable approach to five-membered, nitrogen-con-
taining rings, 5-endo-dig type cyclization is well estab-
lished.7,8 Thus, the activation of triple bond in
homopropargylic amine (i) by electrophiles is known
to induce intramolecular attack by neighboring nitro-
gen-containing nucleophiles to give (ii) (Scheme 1).
Along this line, we envisioned that the indolizine skele-
ton (iii) could be constructed via a 5-endo-dig electro-
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philic cyclization from an acyclic precursor (iv), which
should be readily available from 2-pyridinecarboxalde-
hyde and terminal alkynes. Notably, the use of the
pyridine moiety as a nucleophilic partner of iodocycliza-
tions is unprecedented although it has been employed in
the similar transition-metal catalyzed cycloisomeriza-
tions.3c,f

To validate this idea, propargylic acetate 2 was first pre-
pared by the known procedure.3c,f,9 Thus, the reaction
of 2-pyridinecarboxaldehyde with 1-alkynyllithium
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Scheme 3. Iodocyclization of propargylic acetates.
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afforded propargylic alcohol which, upon acetylation,
was converted to the corresponding ester 2 in excellent
yield, setting the stage for the electrophilic cyclization
(Scheme 2).

Initial screening of several electrophiles reveals that
cyclization is electrophile-dependent. Exposure of ace-
tate 2a to iodine in methylene chloride at room temper-
Table 1. Preparation of various indolizines via a 5-endo-dig iodocyclization
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ature delivered the cyclized product 3a in 92% yield
(Scheme 3).10 In contrast, other commonly used electro-
philes such as Br2, NBS, and PhSeCl failed to initiate the
similar ring closure under the identical conditions.11 It is
not clear at this point what causes this difference, but
we decided to focus on iodine-mediated cyclizations
because it is more convenient to handle compared with
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Table 1 (continued)

Entry Substrate 2 Product 3 Isolated yield (%)
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Scheme 4. Transition-metal catalyzed cross-coupling reactions of
2-iodoindolizines.
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other electrophilic reagents. Therefore, other cyclization
substrates were submitted to the identical conditions to
demonstrate the generality of this process.

As outlined in Table 1, various indolizine derivatives
were obtained in excellent yields, displaying a wide vari-
ety of functional tolerance. In all cases, the reaction was
facile and completed within a couple of hours.

With this promising result in hand, we briefly investi-
gated further functionalization of these indolizines to in-
crease structural complexity. As an iodo group
embedded in the cyclized products 3 could be a useful
handle for further elaboration, we decided to use this
for transition-metal catalyzed coupling reactions.12 To
this end, Suzuki–Miyaura coupling of 3a was conducted
with phenylboronic acid to yield 4 (Scheme 4). Similarly,
Heck reaction of 3a with methyl acrylate under Jeffery
conditions12b cleanly afforded ester 5 in 82% yield. The
phenylacetylene group was installed at C2 of 3a via
Sonogashira coupling to give 6.

Besides, as an iodo group is a good precursor for radical
generation,13 two attempts have been made in this re-
gard (Scheme 5). While 3a was cleanly reduced to 7 un-
der typical radical conditions, the reaction of 3a with
methyl acrylate in the presence of AIBN and Bu3SnH
produced ester 8 as a major product (unoptimized).

In summary, we achieved the expeditious synthesis of
highly substituted indolizines via a facile and efficient
iodocyclization of propargylic ester 2 where pyridine
participated as a nucleophile for the first time. The oper-
ation is simple and environmentally benign. In addition,
an iodo group incorporated at C2 of the cyclized prod-
uct during the iodocyclization allowed subsequent func-
tionalization possible, as exemplified by transition-metal
catalyzed cross-coupling reactions and radical reactions
of 2-iodoindolizines, and this group should be useful for
other bond-forming reactions as well. Further studies to
extend the scope of this reaction for the synthesis of
other fused azacycles as well as to apply this process
to the synthesis of natural products are underway and
will be reported in due course.14
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